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Abstract Agile development processes are adaptive

rather than predictive. Therefore, agile processes empha-

size operational system code rather than its documentation.

To overcome the absence of comprehensive documentation

artifacts, agile methods require constant interaction

between the system stakeholders. Ironically, however,

some traditional documentation artifacts come to support

this kind of interaction. In this study, we examine the

relationship between software and documentation. We

develop an approach that enables incorporating domain

documentation to agile development, while keeping the

processes adaptive. We also provide a system design that

actively uses domain knowledge documentation. These

ideas have been applied through the implementation and

use of agile documentation support components.

Keywords Domain knowledge � Conceptual modeling �
Requirements engineering � Agile documentation

1 Introduction

Agile development processes have become increasingly

popular over the last several years. These processes attempt

to enable more flexible and adaptive software than tradi-

tional software engineering processes do [22].

Probably one of the main contributors to the success

of agile methods is the dissatisfaction with the bureau-

cracy of traditional development methodologies. Agile

methods require less documentation for tasks and pro-

mote implementation based on informal collaborations

between system stakeholders [22]. While traditional

software engineering methods emphasize careful plan-

ning and design, agile methods emphasize the actual

software implementation.

However, this shift of emphasis is not without cost.

Documentation is, among other things, used for knowledge

sharing and reduces knowledge loss when team members

become unavailable [3]. Since documentation is compro-

mised when applying agile methods, important knowledge

may be lost during and after system development.

Agile methods overcome documentation scarcity by

significantly relying on constant collaboration between

developers and users [3]. Relying on collaboration imposes

a critical premise about the stakeholders involved—they

must possess common knowledge and a common language

to enable communication.

However, in many cases, building these common

grounds may be very difficult to achieve. For example, in

distributed development, where interaction is scarce and

backgrounds are different.1 Hence, without documentation,

agile methods do not suggest ways for establishing the

necessary infrastructure supporting collaboration.

It should be noted, however, that agile development

methods do not preclude the use of documentation in their

processes. Rather, in comparison with traditional software

processes, agile development is less document-oriented.
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However, this is not a key point, but rather a consequence

of the agile objective of being adaptive [51]. Therefore, in

essence, it may be possible to support documentation in

agile development methods without compromising the

agile manifesto [60]. If documentation is adaptive and if

the documentation supports people collaboration rather

than replacing it, then documentation can be well aligned

with agile development principles.

This research originates from the question concerning

which kind of documentation can best support collabora-

tion and how we can be able to integrate such documen-

tation in agile development. That is, we examine whether

there is a way to create an adaptive system for documenting

the knowledge necessary for the interaction and collabo-

ration between system stakeholders.

We propose agile documentation of domain knowledge

gathered during systems analysis in traditional processes.

In traditional processes, systems analysis is the stage in

which the need for the system is established and system

requirements are elicited. We examine traditional systems

analysis since this is the stage in which all system stake-

holders interact and a common understanding of the

domain is established and documented. Therefore, within

the process of systems analysis, we are able to find docu-

ments supporting collaboration, which are missing in agile

development processes.

Once a set of collaboration supporting documents is

identified, we establish a method to incorporate such doc-

uments in agile processes. Since agile development

emphasizes the reference to working system code, we

develop a way of having the identified documentation as

part of the executable system code. More specifically, we

suggest a system architectural design that enables adapt-

able documentation as part of the source code. We term our

proposed system design Active Documentation Software

Design (ADSD). Under this design, source code execution

incorporates the execution of documentation statements,

which in turn drive the processing of the system. Stated

differently, with ADSD changes in the documentation

change executable code and vice versa, changes in source

code change the relevant documentation.

The concept of active documentation is based on the

notion that implementation code is closely related to sys-

tem design. These ideas are further developed in the sec-

tions that follow. Section 2 provides the background and

motivation for this work. Section 3 elaborates on principles

guiding the development of the architecture. Section 4

describes the architecture and the implementation of

components for its support. A description of experience in

using and applying the architecture is followed in Sect. 5.

Finally, Sects. 6 and 7 incorporate the discussion and

summary.

2 Background

2.1 Documentation in development processes

According to traditional approaches, software development

processes should incorporate three iterative phases: Anal-

ysis, Design, and Implementation [29]. During this process,

documentation artifacts are created. In fact, studies often

refer to the entire development process as a document

creation process [40, 41, 63]. The different documents

include requirements, interviews, prototypes, and more. A

significant set of documentation artifacts are models.

Models serve as a bridge between the analysis and the

design phases [51]. They are conceived during the analysis

phase and assume different transformations throughout the

design phase.

Among the development phases, the design phase is

probably the most loosely defined and is considered more

creative than a mechanistic process [61]. This phase con-

sists of progressive decompositions toward accumulating

details [59]. Each decomposition results in a new design

document. It has often been claimed that the design doc-

uments created during this phase fail to be synchronized

with reality as the system evolves [9, 15, 41]. Since system

maintenance and update constitute the majority of a

development lifecycle [15], this situation accounts for

much of the criticism on the traditional development pro-

cesses. The processes were too cumbersome to support

limited benefits [22].

Agile development methodologies emerged as a result

of the difficulties described in the preceding paragraph.

Agile methods embrace the unique attributes of working

code. Working code tells the stakeholders what they really

have in front of them, as opposed to models with promises

which state what they will have in front of them [33]. In

agile processes, a minimum set of principles is provided

rather than detailed development rules. Hence, agile

methods aim at overcoming the deficiencies in the tradi-

tionally ambiguous design phase by avoiding intermediary

artifacts.

However, as noted, while it may be that traditional

development methods over-document, a credible weakness

of agile methods is of insufficient documentation [51]. In

both agile and traditional approaches, during the processes

known as requirements engineering, the development team

must acquire the same information and the customer must

make the same decisions about the system [38]. While

theoretically agile processes need to use the same kind of

knowledge to facilitate an effective development process,

they cannot reconcile its documentation with the agile

principles. Therefore, due to the difference in development

practices, traditional development usually embodies the
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requirements in a written document, while agile develop-

ment does not [38].

2.2 Requirements engineering in agile processes

The major difference between agile and traditional

approaches is not whether to engage in requirements

engineering (RE), but rather when to do so [38]. In agile

development, requirements are built throughout the

development process. Therefore, there are no models

documenting acquired domain knowledge. Rather, knowl-

edge is only found in code, test cases, and programmers’

memory [49]. The way RE is supported in such an envi-

ronment is implied in the practices taken to facilitate

source code modification. In this respect, agile RE is sup-

ported by following the following principles:

Domain Knowledge should be constantly available for

easy reference—This principle is reflected in the ‘‘Small

Releases and On-Site Customer’’ practice in Extreme

Programming (XP), which states that users or domain

experts work directly with the programmers, answering

questions about details and resolving misunderstandings

as they come to light [38]. Similarly, Crystal and

Adaptive Software Development (ASD) advocate an

end-of-iteration process and team reviews. ASD and

Scrum use end-of-iteration reviews with customer focus

groups [33].

Attempt to validate requirements explicitly in some

source code—This principle is reflected in the ‘‘Test

First’’ practice, which states that programmers are

required to write tests for each bit of code before

writing the code. Thus, the software and a refined test

suite grow together [38].

Attempt to get code associated with requirements easy to

locate, understand, and update in source code—This

principle is reflected in the ‘‘Refactoring’’ principle.

Refactoring is the act of changing working code so it still

carries out the same tasks but in a way that is easier to

understand and modify [38].

The way updated requirements are embedded in code

should be shared between developers—This principle is

reflected in the ‘‘Pair Programming’’ practice in XP,

which sets that all production code is written by two

programmers together. Similarly, Crystal, Scrum, and

ASD advocate close collaboration practices including

barrier-free collocated teams. Lean Development stres-

ses team interaction [33].

Development should follow users’ view rather than

system view—This principle is reflected in the practice

of using ‘‘story cards’’ in XP. A similar notion is found

in Scrum, using the term ‘‘backlog’’. ASD and Feature-

Driven Development refer to features. Basically, agile

approaches plan features, not tasks, because features are

understood by customers [33].

Hence, different practices are taken in agile approaches

to facilitate requirements engineering. While these prac-

tices are different from traditional practices, they help elicit

similar knowledge. The key difference between agile

approaches and traditional approaches, however, is that

while traditional approaches explicitly document the

gathered knowledge, agile approaches tend to refer to

source code as the only documenting artifact.

2.3 Implementation as a design document

Advocates of agile development processes posit that sys-

tem source code should serve as the ‘‘true design docu-

ment’’ of the system [55]. In this section, we suggest that

while source code can indeed serve to reflect many aspects

of the system design, it is not a true replacement of the

traditional design documents. We begin by reviewing the

forces that lead to this conception in agile methods.

Traditionally, the design process gradually moves from

the ‘‘problem space’’ to the ‘‘solution space’’ [10]. How-

ever, as different paradigms of programming emerged, the

difference between the problem and solution domain

became less and less distinct [29]. Initially, programs did

not exhibit problem-level information that could be

understood or modified. The programmer was not required

to make a program understandable and modifiable, but

rather programs were merely measured by their efficiency

and whether they could accurately solve a specific problem.

Presently, software engineering emphasizes that programs

should be written to be understandable and maintainable.

An important step in this direction was the introduction of

Object-Oriented Programming (OOP) paradigm, in which

programmers are thinking more in terms of the problem

domain [1].

The more source code related to the problem space, the

more difficult it was to distinguish between design and

implementation. For example, Heramann [32] states that

some studies [16, 35] have pointed out that object-oriented

analysis refers only to domain objects, while object-

oriented design refers also to future system objects. He also

mentions that other studies have not yet clearly distin-

guished between the designs [57, 58].

This state of affairs has led to the perception suggesting

that source code is in fact the design document. While such

arguments have merits, we cannot claim that source code

and other design models created during the development

process are equivalent. Two major differences exist

between these two concepts:

1. Source code is less accessible to different stakeholders

in the organization than design documents are.
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Basically, only a professional programmer can under-

stand the source code. Further, familiarity with the

development environment is needed in order to

navigate through the source code.

2. While there may be an overlap of information

available in source code and other design documents,

there are still many differences. For example, source

code contains more information since it holds imple-

mentation-related details. Such details include net-

working details and security issues. On the other hand,

in other respects, source code contains less information

due to differences in its semantic power. For example,

most programming languages do not support the

explicit representation of roles, while roles are often

found in early design documents.

In short, traditional design documents and system source

code are highly related. Some of the knowledge found in

traditional design documents can also be found in source

code. However, fundamental properties associated with the

structure and composition of code to date distinguish it

from design documents.

3 Supporting agile documentation

3.1 Documentation objectives

Important documents, which are absent when using agile

methods, are those created during the analysis phase in

traditional development processes.

Systems analysis was defined as the phase in which

reasons for the need of an information system are under-

stood [19]. However, realizing that inaccurate requirements

account for many problems encountered during software

development [e.g. 5, 48], the concept of systems analysis

has undergone some transformations. Gradually, reference

to the systems analysis phase has shifted from ‘‘Systems

Analysis’’ to ‘‘System Requirements Analysis’’ [e.g. 24],

‘‘Requirements Analysis’’ [e.g. 28], and most commonly

today to ‘‘Requirements Engineering’’ (RE).

RE is concerned with interpreting and understanding

stakeholders’ terminology, viewpoints, and goals [50].

Therefore, models support all RE activities [42]. More

specifically, in traditional development methods, RE pro-

cesses incorporate the modeling of the existing domain as

well as alternative hypothetical systems [42]. In the liter-

ature, these two types of models are often referred to as

‘‘conceptual models’’ and ‘‘system models,’’ respectively.

Conceptual models represent the problem understanding

[20] and facilitate understanding among various stakehold-

ers in the organization [47]. Mylopoulos [46] describes

conceptual modeling as the ‘‘activity of formally describing

some aspects of the physical and social world around us for

purposes of understanding and communication’’ [46]. Both

conceptual models and system models are essential for the

RE process—conceptual models for understanding the

problem domain and system models for generating

requirements associated with the system.

Since the understanding of the application domain and

alternative systems changes as development process prop-

agates, both conceptual and system views are dynamic and

evolving. In this respect, evolved system code naturally

represents the most accurate system model. Therefore, as

the agile movement has pointed out, the need for the ori-

ginal system models may be challenged. Nonetheless, this

is not the case for conceptual models. As the understanding

of the domain evolves, conceptual models are not accu-

rately represented anywhere. Ironically, while conceptual

models are lost in agile development methods, they could

be highly relevant when using such methods. Agile

development requires constant and efficient communica-

tion between all system stakeholders, which is the core

purpose of conceptual models. Since our objective is to

facilitate their documentation in agile processes, we

examine the content of conceptual models.

3.2 Documentation constructs

In order to enable agile documentation of conceptual

knowledge, we examine the core documentation constructs

used when creating conceptual models under the traditional

RE processes.

As stated by Nuseibeh and Easterbrook [50], to a great

extent, the elicitation technique used during RE is driven

by the choice of the modeling scheme, and vice versa. To

this end, Nuseibeh and Easterbrook [50] mention four

general categories of modeling approaches used in RE:

Data Modeling, Behavioral Modeling, Enterprise Model-

ing, and Domain Modeling.

Over the years, an extensive number of modeling lan-

guages with varying levels of complexity have been

developed under each modeling approach. Naturally, as a

modeling construct grows in complexity, it becomes more

difficult to use, and its appeal for agile documentation is

reduced. However, in each of the four modeling approa-

ches, there seems to be a set of core modeling constructs,

which are commonly used for communication about the

domain. By enabling the use of these constructs in working

implementation code, we wish to enable active documen-

tation of the domain. Therefore, in the following subsec-

tions, we review the core constructs used under each

modeling approach.

It is important to note that the approaches are not

mutually exclusive. Rather, each approach takes a different

view as to the aspects that should be emphasized to
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facilitate requirements elicitation. Data modeling approa-

ches deal with understanding the information that needs to

be stored, maintained, and managed by the information

system. Behavioral modeling approaches deal with the

dynamic or functional behavior of stakeholders and sys-

tems. Enterprise modeling approaches deal with under-

standing an organization’s structure, the business rules that

affect its operation, and the goals, tasks and responsibilities

of its members. Finally, domain modeling approaches deal

with understanding the impact of the system on the domain

and the way it helps to control the domain.

Since the approaches are not mutually exclusive, the

meaning of some of the core constructs used in different

approaches may overlap with each other. Hence, to facili-

tate clear documentation of domain knowledge in Infor-

mation Systems (IS) code, following our review, we

compare the constructs and integrate them. This enables us

to provide a set of constructs that do not overlap with one

another, are well defined, and that their inter-relationships

are clearly understood.

3.2.1 Data modeling

Data modeling aims at helping stakeholders make decisions

about the type of information the developed system should

represent. These models help communicate the correspon-

dence between the information system and the real world [50].

Some of the better known data-based approaches are

based on Entity-Relationship (ER) modeling [12]. ER

diagrams consist of entities, relationships, and in the

extension model termed E-R-A, also attributes. The ER

model has evolved over time, and today the Extended

Entity Relationship model (EER) is often referred to in

conceptual modeling.

There are many other data-based modeling methods

adopting similar constructs identified in the ER-based

approaches. For example, the Object-Role-Modeling

(ORM) approach [25]. ORM views the world in terms of

things that play roles. In essence, in ORM, the way an

entity participates in a relationship is its role. Relationships

can be of various arties, which means that a relationship

can be defined to include virtually as many roles as desired.

In this respect, similar to the EER approach, ORM also

defines cardinality constraints on relationships. That is,

they provide a way to state that a relationship is restricted

on the number of participating entities.

The ER-based approaches have gradually evolved, and

object-oriented approaches can be considered as their

consequents. Object-oriented techniques include objects,

attributes, and structural relationships – generalization and

composition. A significant difference from the EER

approach is that in the object-oriented paradigm, objects

additionally incorporate services/methods. Accordingly,

the core domain aspects captured in the data modeling

approaches are the following:

• Entity—a ‘‘thing’’ in the domain that can be distinctly

identified.

• Operations—services or tasks a thing can execute or

perform.

• Entity sets/entity types—a group of entities of the same

type.

• Relationship—a relation between entities.

• Relationship sets—a relation between entity sets.

• Value sets—a range of values.

• Attributes—mappings from entity sets or relationship

sets to value sets.

• Constraints—relationship sets and attributes can have

cardinality constraints

3.2.2 Behavioral modeling

Behavioral modeling approaches emphasize the system

behavior rather than the domain. Still, in the behavioral

perspective, the attempt is to identify the events that occur

in the real world, the information affected by their occur-

rence, and the functions that are invoked to cause this

effect.

In general, Rolland and Prakash [56] identify three

categories of behavior models:

1. Control flow is the oldest and most popular form of

behavior model. Control flow iterates through steps

following the completion of a previous step, regardless

of the availability of inputs.

2. Data flow models iterate through steps upon input

provision. In this case, inputs are provided directly

from outputs of other steps.

3. State machines iterate through states upon events in the

environment. The inputs to a step are calculated as part

of the step itself. State machines comprise the basis of

UML’s behavioral models.

Underlying all the state-oriented techniques is the finite

state machine. A finite state machine is a hypothetical

machine that can be in only one of a given number of states

at any specific time. In response to an event, the machine

operates and generates state changes. Hence, the core

domain aspects captured in the behavioral modeling

approaches are those defined for state machine that can

relate to the domain. Accordingly, the core behavioral

domain aspects are as follows:

• States—represent the state of the domain.

• Transition—a state change from the source state to a

destination state
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• Pre-conditions/post-conditions—define what causes a

transition and what the consequence of a transition is

• Activities—performed as long as the state is active.

• Events—trigger transitions between states

3.2.3 Goal-oriented\business enterprise modeling

approaches

Enterprise modeling concerns the business along with its

goals. Central to this modeling approach are actors and

goals. An actor is an active entity that carries out actions to

achieve goals [37]. In turn, different definitions are avail-

able for the term goal. However, in general, all definitions

reflect the idea that a goal is a state that is desired to

achieve [43] or a state of affairs in the world that the

stakeholders would like to achieve [44].

A famous example of enterprise modeling is the i*

model [64]. In i*, the participants of the organizational

setting are actors with goals. These actors depend on each

other in order to fulfill their objectives and perform their

tasks.

Another popular goal-oriented approach is KAOS [18].

The main emphasis of KAOS is on the formal proof that

the requirements defined for the envisioned system match

the goals.

GBRAM [6] is another popular method that uses goals

as the means to elaborate and structure system require-

ments. Similar to the other goal-oriented approaches, a

system and its environment are represented in GBRAM as

a collection of agents, which are defined as entities or

processes that seek to achieve goals within an organization

or a system.

With the notion of goals and actors, the different goal-

oriented techniques model stakeholders’ interests and how

they might be addressed by the various configurations of

systems and environments.

Relationships between goals are aimed at capturing

situations in which goals positively or negatively support

other goals [43]. For example, a conflict relation between

two goals is introduced when the satisfaction of one of

them may prevent the other from being satisfied [43]. In the

process of goal operationalization, new and less abstract

goals related to original ones through causal relations are

identified [45]. In this process, goals are essentially

decomposed to and-refinements and or-refinements. In and-

refinements, a set of subgoals sufficient for satisfying the

parent goal are identified. In or-refinements, different ways

for achieving a parent goal are identified.

Dependency is another common construct in goal-

oriented approaches. In i*, dependency is a relationship in

which one actor (the depender) depends on another actor

(the dependee) for something (the dependum) to be achieved

[65]. Three types of dependencies can be distinguished: goal

dependency, resource dependency, and task dependency. In

a goal dependency, an actor depends on another actor to

fulfill a goal. In a resource dependency, an actor depends on

another actor to provide a resource, which is a passive entity

[36]. In a task dependency, an actor depends on another actor

to carry out a task, which is a particular way of doing

something [44].

Similar notions are used in other goal-oriented approa-

ches and some also repeat the constructs used in data and

behavioral-oriented approaches. For example, KAOS goal

definition patterns are used for specification of goals. These

patterns include achieve, cease, maintain, optimize, and

avoid [14]. KAOS objects are very similar to those discussed

in data model approaches, and objects can be entities, rela-

tionships, or events. Finally, KAOS operations are input–

output relations over objects and relate to behavioral mod-

eling constructs. In essence, operations define state transi-

tions and have pre-, post-, and trigger conditions.

Accordingly, the additional domain aspects captured in

goal-oriented modeling approaches are the following:

• Goal—a state that actors want to bring about.

• Goal relations—the relation between goals capturing

where goals positively or negatively support other

goals.

• Actor—an active entity that carries out actions to

achieve goals.

• Resource—a passive entity.

• Task—specifies a particular way of doing something.

• Dependency—a relationship in which one actor

depends on another actor.

3.2.4 The domain knowledge approach in requirements

engineering

Domain modeling approaches highlight the need for a clear

relationship between requirements and specifications [68].

The view under this approach is that specifications together

with relevant domain knowledge should be sufficient to

guarantee that requirements are satisfied. This is formalized

in Zave and Jackson [68]:

K; Sj � R

where K is knowledge about the problem domain, S is the

specification of the solution, and R is the problem

requirement.

Viewing RE under the domain knowledge approach

dates back to the work of Dubois et al. [21], who suggested

the Entity-Relationship-Attribute-Event, (ERAE) language.

This language borrows from ideas in Semantic Networks

and Logic. More recently, Problem Frames [26, 34] reflect

this point of view.
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The uniqueness of the approach is in the clear attempt to

distinguish between the system and the environment. By

emphasizing problems rather than solutions, one can

exploit the understanding of a problem class [26].

Within a problem frame, a machine domain is defined

and modeled. The machine domain is the system built

together with its underlying hardware. In contrast to the

machine domain, other domains, termed given domains,

represent parts of the world that are relevant to the prob-

lem. These domains include physical events and state that

are causally related. The different domains may share

events and state information. These are termed shared

phenomena. Phenomena shared between two domains are

observable by both, but controlled only by one of them.

In the problem frames framework, a requirement is

defined as a condition in the problem domain that the

machine domain must guarantee to qualify as a solution to

the problem. With this, the domain constructs of the

domain modeling approaches are [13, 34]:

• Phenomenon—an element of what we can observe in

the world.

• (Given) domain—is a set of related phenomena that are

usefully treated as a behavioral unit for some purpose.

• Event—an occurrence at some point in time, regarded

as atomic and instantaneous.

• State—a relationship between two or more individuals

that can be true at one time and false at another.

• Value—an individual that cannot undergo change over

time. It is a kind of a phenomenon. The values in which

we are interested are things represented by numbers and

characters.

3.2.5 Integration

The preceding sections revealed that the four RE approa-

ches emphasize modeling different parts of the domain.

Therefore, each approach takes a different set of modeling

constructs. However, the different approaches are not

mutually exclusive, and the knowledge they aim at docu-

menting may overlap. Consequentially, the constructs used

to model the domain in the different approaches may have

similar meanings.

Under these circumstances, the challenge is to provide a

coherent and well-defined set of constructs that will enable

the representation of the domain knowledge gathered in

any of the four RE approaches. We approach this task by

referring to the Enterprise Ontology [62].

Generally, an Enterprise Ontology defines a set of

constructs and their interrelations, which together are used

to explicate the business domain. Different Enterprise

Ontologies and supporting frameworks have been proposed

over the years [e.g., 23, 62, 67] designed to support

different activities. Uschold et al.’s Enterprise Ontology is

semi-formal. That is, it provides a glossary of terms

expressed in a restricted and structured form of natural

language. Hence, it provides the rigor required for the

definition of constructs, while keeping the natural expres-

siveness required to support communication.

In the Enterprise Ontology, Uschold et al. [62] define a

set of constructs that enable representing any phenomenon

at the business domain. As such, their constructs are well

defined and the interrelations between them are made clear.

By corresponding between the constructs used in the four

RE approaches and those of the Enterprise Ontology, we

are able to distinguish between the core constructs, as well

as identify their compositions and interrelations.

However, not all constructs used in the Enterprise

Ontology are necessarily relevant for representing RE-

based domain knowledge (REDK). The REDK represen-

tation constructs are those naturally used to discuss and

identify system requirements. The constructs of the

Enterprise Ontology, on the other hand, come to represent

anything in the domain, including elements that may not be

captured in RE. Furthermore, it is not clear how the con-

structs identified in the previous section relate to Enterprise

Ontology constructs. There is a need to identify which

constructs in the Enterprise Ontology can be used to rep-

resent RE domain knowledge.

Hence, in this section, we identify a subset of the con-

structs defined in the Enterprise Ontology, namely the

constructs that can be used to represent REDK. For this

purpose, we apply a mapping from the constructs identified

in the four RE approaches to constructs defined in the

Enterprise Ontology. This process yields a mapping to the

following Enterprise Ontology constructs. (The mapping

itself is given in Table 1.) The explanations taken from the

Enterprise Ontology for these constructs are as follows:

• Entity A fundamental thing in the modeled domain.

• Relationship The way that two or more entities can be

associated with each other. Within a relationship, an

entity may have a role (e.g. a person may be a customer

in a sale). Alternatively, an entity may be seen as an

attribute of another entity (e.g. date of birth of a person).

• Roles An entity may have a role reflecting its relation-

ship with other entities. Some relationships are special

in that they entail some notion of doing or cognition.

We refer to an entity involved in such relationships as

an actor. Relationships among actors may entail some

view (activity or cognition) for one of them. This view

indicates the actor has an actor role.

• Actors Certain roles in a relationship are special in that

the playing of these roles entails doing or cognition.

These are called actor roles. Entities playing such roles

are called actors. Hence, if the role played by an entity
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entails some notion of doing (such as exposing

services), or cognition (such as desiring a goal), the

entity is an actor. Actors are active entities in the

organization. An actor can either be a person, an

organizational unit, or a machine that performs some

activity.

• Resources When an entity does not expose a notion of

doing or cognition in any relationship, it is a resource.

A resource is the role of an entity in a relationship with

an activity whereby the entity is or can be used or

consumed during the performance of the activity.

• Activities/services Something done over a particular

time interval. An activity has pre-conditions and

effects, is performed by one or more doers, can be

decomposed into more detailed subactivities, may

entail the use or consumption of resources, can have

authority requirements, and may have an owner.

• State (of affairs) A state is some kind of situation that

can be thought of as holding or being true. An attribute

is a relationship between two entities (referred to as the

‘attributed’ and ‘value’ entities) where for any partic-

ular attributed entity, the relationship may exist with

only one value entity. A state of affairs is a situation

characterized by any combination of entities that are in

any number of relationships with one another.

• Purpose/goals A goal is the role of a state whereby the

actor wants, intends, or is responsible for the full or

partial achievement of the state. A goal (achieve) is the

realization of a state (of affairs).

• Help achieve A relationship between two states of

affairs whereby one state of affairs contributes to or

facilitates the achievement of the other state of affairs.

The help achieve relationship is particularly important

when the states of affairs are goals. In this case, the help

achieve relationship may define a directed acyclic

network of goals, which gives rise to a notion of higher-

and lower-level Purposes/Goals.

• Constraints The Enterprise Ontology mentions three

types of constraints: 1) Effect—a state that is brought

about by an activity. 2) Pre-condition—a state required

Table 1 Requirements engineering domain knowledge constructs mapping

Concept Goal Oriented Data based Behavioral Domain Based

Entity Entity (e.g. [12]) Phenomenon

(e.g. [26])

Relationship Relationship

(e.g. [12])

Actor Actor (e.g. [6]) Entity (e.g. [57]) – Part of Phenomena

(e.g. [34])Agent (e.g. [11])

Role (Actor Role) Role (e.g. [66]) Relation (e.g. [12]) Operations –

Role (e.g. [25])

Goal/Subgoals (Purpose) Achieve goal/maintain

goal (e.g. [18])

– –

Help Achieve Subgoals (e.g. [18])

Goal dependency

(e.g. [66])

Service (Activity) High-level task

(e.g. [66])

Operations/methods

(e.g. [16])

Activities –

Resource Resource (e.g. [66]) Entity (e.g. [12]) – –

Constraint (Activity Specification) Cease goal; avoid

goal (e.g. [18])

Constraints (e.g. [12]) – –

State and attributes

(State of Affairs)

– Value (is part of

attributes) (e.g. [12])

State (e.g. [53]) State (e.g. [68])

Pre-Condition Pre-condition is part

of a task and

a resource

dependency

(e.g. [66])

Events (e.g. [27]) Events (e.g. [26])

Pre-condition is

part of

transition (e.g.

[54])

Concept Goal oriented Data based Behavioral Domain based

Effect Effect is part of a task

and resource

dependency

(e.g. [66])

Post-conditions

(e.g. [27])

Effect is part of

transition (e.g.

[54])
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to be true in order for the activity to be performed. 3)

Restrictions on the range of activities in the universe.

• Pre-condition A state of affairs required to be true in

order for the activity to be performed.

• Effect A state of affairs that is brought about by an

activity.

In Table 1, which depicts the mapping, the leftmost

column incorporates the Enterprise Ontology construct.

Based on this mapping, it can be seen that the Entity and

Relationship constructs are more abstract, and under the

REDK constructs domain, other constructs subsume them.

Entities are subsumed by resources and actors. Relation-

ships are subsumed by roles and attributes. We also note

that pre-conditions and effects are often used together both

in RE literature and in the Enterprise Ontology. Specifi-

cally, the two together are part of the definition of a service

in the Enterprise Ontology and relate to transitions and

dependencies in the RE approach. Therefore, we compose

them under one construct – Transition.

Hence, based on the RE literature and the Enterprise

Ontology, we have identified eight fundamental domain-

related constructs: Actors, Roles, Resources, Services,

Goals (that relate to Help Achieves), Constraints, Transi-

tions (Incorporating Pre-conditions and Effects), and

States (Consisting of Attributes). The relations between the

core constructs are depicted in Fig. 1.

4 Representation of domain knowledge in the system

code

Following our identification of the core constructs used for

RE domain knowledge representation, we turn to the task

of enabling agile use of those constructs. That is, we sug-

gest an infrastructure in which the identified REDK con-

structs can be used by developers to represent domain

knowledge in system code.

We propose accomplishing this by enhancing the tra-

ditional object-oriented programming paradigm, namely

enabling using REDK constructs in object oriented code.

This in turn, should enable system developers to directly

document in code things such as specific actors, resources,

roles, goals, services, and constraints from the organiza-

tion’s domain. Hence, using REDK constructs in system

code enables explicit documentation of domain knowledge

as part of the working code.

Therefore, we provide a new class base. Our class base

to support the use of REDK constructs is depicted using

UML notation at the lower part of Fig. 2. These classes

are related, by a one-to-one relationship, to the REDK

representation constructs of Table 1. That is, each con-

struct of Table 1 has a matching class in the figure.

Therefore, all constructs can be used to document domain

knowledge. We see that similarly to the interrelations

Construct

Relationship

Construct A Construct B

Construct A Construct B

Relationship

Construct

Construct A is a 

Construct B

Construct B is a 

manifestation of 

Construct A

LEGEND

Construct A is a 

composition of 

Construct B

Construct B

Construct A

ActorResource
Attribute

Role

Is in a

Goal

Can
Expose

Interacts 
With in

Services

desires

State

May be
a composite of 

other

May be a
Composition or 

generalization of 
another

Plays

May be a
Composition or 

generalization of 
another

Changes 

Is in a

Used by 

Enacts

Transition

Constraint

Limits

Event Post 
condition

Triggers Brings
to

Transition
Constraint

Can 
Represent

Relates toHelp Achieve

Fig. 1 Metamodel of requirements engineering domain knowledge constructs
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between REDK constructs reflected in Fig. 1, each class

can involve using other classes, therefore the association

between classes at the bottom part of the figure. For

example, since a role may include a service, we see the

association between the role and the service classes in the

figure.

The top part of Fig. 2 illustrates the use of our base

classes to represent specific domain knowledge. The class

above the horizontal line reflects specific domain knowl-

edge linked by an ‘‘is-instance-of’’ relationship to the

REDK role construct at the lower part of the figure. We

have termed the area above the horizontal line Domain

Knowledge Representation Layer (DKRL). Specifically,

Fig. 2 shows that the meaning of the role Student in the

domain is made explicit at the DKRL.

We note that knowledge represented using the REDK

constructs is usually incorporated in the information sys-

tem code. However, without explicit representation con-

structs, this knowledge is eventually intertwined with other

implementation elements. For example, under the Object-

Oriented (OO) paradigm, actors, resources and roles, which

are associated with the domain, may often have represen-

tation using the same construct (i.e. the class construct) in

the final implementation code. Further, elements that have

no domain meaning may be associated with domain-related

classes in the implementation code. For example, while a

+Goal:CumLaude: HighGPA AND Graduated()
+Goal:GraduateOnSchedule: GraduationYear<=4()
+Service:RegisterToCourse; Event: NotRegisteredToCourses; Post: RegisteredlCredits>=12()
+Constraint:GPA>=0()
+State:Graduated: TotalCreditsGained>=90()
+State:HighGPA:GPA>=3.5()

-GPA
-RegisteredCredits
-TotalCreditsGained

Role Student

-RolesPlayed
-State

Actor -Services
-Goals
-States
-Attributes
-RelationWith

Role

-Value
-Name

Attribute

-RolesPlayed
-State

Resource

-Name
-Transition
-Status

Service

-Name
-Attributes/substate Value

State

-Event
-Post Condition

Transition -Achived
-HelpAchives

Goal

-Name

Constraint (unlawful state)

1 *
1 *

1*

1

*

1

*

1
*

1

1

1

2

1

*

-Name

Constraint (unlawful transition)

DKRL

Base Classes

Fig. 2 Conceptual subsystem base classes used when representing knowledge at DKRL
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student in the domain typically does not incorporate any

file handling services, the final implementation class may

very well incorporate such services.

Therefore, in our approach, we provide more than just

means for using REDK representation constructs. We also

provide a system design facilitating the separation of the

represented REDK (i.e. the DKRL) from other types of

knowledge in the IS code. Hence, using REDK constructs

under the suggested system design comes to facilitate the

creation of domain models that reside at the DKRL. These

domain models are part of the executable code, require

minimal programming knowledge to understand, and are

accessible to all system stakeholders.

5 The system design

We provide a system architectural design with a supporting

mechanism that enables a physically isolated conceptual

model to be used by other remote system components.

More specifically, we suggest an architectural design in

which the domain knowledge is separately located at what

we term the Conceptual Subsystem. This domain knowl-

edge is used by other system components, which together

we term the Processing Subsystem.

Generally, under our proposed design, we facilitate a

two-way interaction channel between the processing sub-

system and the conceptual subsystem. During system run-

time, changing the state of an element related to

documented domain knowledge is done through the con-

ceptual subsystem. That is, the processing subsystem

updates states related to the domain through the conceptual

subsystem. Conversely, based on documented domain

knowledge, the conceptual subsystem updates the pro-

cessing subsystem once processing needs to be done.

We have implemented system components to support

such an interaction and have used them on a case study of a

student registration system, adapted from Barker and Pal-

mer [8]. We illustrate the workings of our proposed system

design based on this experience.

Briefly, the considered system handles tasks associated

with student enrollment services. For example, the system

enables enrollment into courses, a process students have to

undertake if they are not registered to any course. During

the student’s enrollment process, the system enables stu-

dents to keep track of their grade point average (GPA),

which helps them consider enrolling to particular courses.

Students typically consider enrolling to courses which will

enable them to complete their degree in time and improve

their chances to complete it with honors.

Notably, being able to define the most basic system

functionalities above entails that considerable domain

knowledge was accumulated:

1. Some of the people in the domain play the role of

students.

2. In the domain, students have a GPA, a graduation year,

and a total number of credits of courses in which they

are currently enrolled.

3. In the domain, students desire to complete their degree

cum laude.

4. In the domain, students desire to complete their degree

within the timeframe of no more than 4 years.

5. In the domain, completion of degree cum laude

requires a GPA greater than or equal to 3.5.

6. If someone in the domain is a student, he/she must

always be registered to 12 points worth of credit

courses. If this is not the case, the system needs to start

the course registration processes.

Under our proposed design, all elements of the domain

knowledge are explicitly documented at the Conceptual

Subsystem. Figure 3 illustrates how this is done by using

the REDK representation constructs.

Using the role representation construct, it is made clear

that the student role entails having a GPA, a graduation

year, and a total number of credits as the state-composing

attributes. Further, using the goal construct, the two goals

of students are documented. Next, using the service con-

struct, the pre-conditions and post-conditions of the course

registration service are documented. Further, constraints

are documented.

With domain knowledge documented at the DKRL, we

now turn to describe how we support the interaction between

the conceptual subsystem and the processing subsystem. In

order to relate to the domain knowledge documented at the

conceptual subsystem, the processing subsystem creates

instances of the documented knowledge during runtime. In

our example, the processing subsystem will create instances

of actors and the student role which they play. These

instances reside at the conceptual subsystem, and their

creation automatically derives the creation of other relevant

instances; such as instances of the documented goals,

services, and constraints of the student role. We term the

area in which the instances reside the Instance Base. In

Fig. 3, some of the created instances are depicted. These

instances are shaded and can be found at the lower right part

of the figure.

Whenever the processing subsystem needs to update

states related to the created instances, the updates are done

at the conceptual system. In our example, updates of a

student’s GPA or the number of credits in which a student

is enrolled are done at the conceptual subsystem on the

respective instance of the student role.

Once such updates are made at the conceptual subsystem,

the conceptual subsystem examines relevant instances at the

Instance Base. In this process, the conceptual subsystem
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identifies whether constraints have just been violated,

whether goals have just been fulfilled, and whether services

need to be performed.

In our example, once the GPA value changes, the system

identifies whether the HighGPA state has been reached.

Similarly, once the number of credits enrolled in changes,

the conceptual subsystem identifies whether the Not Reg-

istered to courses state has become true. Arrival at one of

these states will suggest that a service may needs to start, a

constraint may have been violated, or a possible goal has

been met. If indeed one of the latter occurs, the processing

subsystem is notified via a complementary notification

event. In our example, changing the GPA to an average

higher than 3.5 may entail being CumLaude, if the student

has also graduated. In such a case, the conceptual subsys-

tem sends a notification event to the processing subsystem.

Under this framework, based on the documented domain

knowledge, the processing subsystem is notified once an

instance reaches a domain-based situation of interest.

At the processing subsystem, different implementations

can be defined for the different events. For example, in a case

of a violated constraint, an error message may be generated

by the processing subsystem. Alternatively, when the

‘event’ state of a documented service is reached, the pro-

cessing subsystem will execute the methods that should

bring the object to service’s documented post-condition.

In our example, if a student is found to become not

registered to courses, the notification event sent from the

conceptual subsystem to the processing subsystem will

trigger a registration process at the processing subsystem.

This process will enable the student to use the system to

register to new courses. Consequentially, during process

execution, once the student’s number of registered credits

will reach a total greater than 12, the conceptual subsystem

will identify that the post-condition state has been arrived

at. In turn, identifying the arrival at the post-condition state

triggers a new notification event to the processing sub-

system; i.e. an event indicating that the service may have

Processing 
Subsystem (PS) 

Conceptual 
Subsystem 

(CS) 

Role Student 
Attributes : GPA, Registered Credits, Total Credits Gained.
Goals :  Cum Laude – HighGPA AND Graduated 
             Graduate on Schedule: Graduation Year <=4  
Service : Register to courses  

Pre conditions – Not Registered to courses 
Post conditions –Registered Credits >= 12

               Constraints: Registered > 50
               Transition Constraints : No Credits => Graduated 
States: Graduated: TotalCreditsGained>=90 
             NoCredits: TotalCreditsGained=0 
             HighGPA: GPA>=3.5 

Instance Base (IB)

Actor  John  

Role 1: Student Role 
Role 2: Employee 
Role N: …

Based On 

Create/ Destroy/ use/ modify 
Mediator 

 Component (MC) 

HandleConstraint 
Event 
HandleService Event Notify states 

of interest 
documented 
at the CS 

Use to create 
knowledge 
instances, and 
propagate 
state changes 

DKRL

Role Student 
Relation with: Stanford 
Service:RegisterToCourses 
Goal:CumLaude

     State:GPA=2,     
  Registered=12,  

             Total Credits =20 

Goal: Cum Laude 

Achieved: false 
Service : Register to courses 

Status: in process  
Actor  Stanford  

Role 1: Employee 
Role 2:  

Fig. 3 System design and an

example instance of use
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completed. Again, it is up to the processing subsystem to

decide if and how to operate based on such an event. In our

case, once such an event reaches the processing subsystem,

the system indicates to the interacting student that the

registration requirements have been met and no further

registration to courses is needed.

This interaction between the conceptual subsystem and

the processing subsystem is supported by a system com-

ponent we term the Mediating Component. The component

facilitates routing of notification events to the processing

subsystem. In the figure, it can be seen that the component

has procedures dedicated to handle notification events from

the conceptual subsystem (such as, HandelConstraint-

Event). These procedures activate the relevant methods at

the processing subsystem as an outcome of the events.

Thus, formally we propose a system architecture com-

prising four components (see Fig. 3):

– The Conceptual Subsystem (CS) A subsystem imple-

menting REDK knowledge. The source code of this

subsystem includes explicit representation of REDK by

utilizing the REDK representation constructs base

classes. The knowledge incorporated in this subsystem

can be used by processing subsystems, defined in the

next paragraph.

– The Processing Subsystems (PS) A set of subsystems

incorporating all other system-related issues such as

data type and structure information, service processing,

algorithmic details, input/output operations, device

interaction, and user interface aspects. Within the

source code of these subsystems, no segments would

embed REDK.

– The Instance Base (IB) An instantiation of domain-

related elements, documented and coded at the Con-

ceptual Subsystem. In other words, the IB incorporates

instances of specific actors, roles and resources, of

which knowledge needs to be used during runtime of

the specific system. The source code defining these

elements is found at the CS, and upon system

execution, the PS can instantiate these elements. Once

instantiated, these instances are found at the IB.

– The Mediator Component (MC) A component which

incorporates all knowledge associated with interaction

between other components. This component does not

include domain knowledge. It only facilitates the

interaction between the PS and its IB.

6 Discussion

Our method addresses consolidating agile processes with

domain documentation. We have developed an active

documentation approach, aimed at capturing the conceptual

model of the domain. Conceptual models have been well

recognized as facilitators of communication and domain

understanding. Also, while system models are represented

to different extents in actual implementation code, domain

models are practically lost once implementation takes

place.

In order to enable explicit documentation of domain

knowledge typically found in domain models, use of core

constructs from the different modeling approaches needs to

be supported. In this work, we have identified the core

constructs for domain models, but our approach is not

limited only to these constructs. As research progresses and

new representation constructs are identified, their use can

be integrated as well.

Indeed, extended representation constructs have been

suggested in methodologies that evolved. The set of

extended constructs that are relevant for representation

may vary in different organizational settings. Other repre-

sentation constructs can be incorporated by defining their

meaning and their relations with the identified core con-

structs, and accordingly defining respective core classes for

use in IS code.

Our documentation approach is adaptive and fits within

the context of agile development. According to Cockburn

[17], the agile manifesto incorporates four core values

motivating agile software development practices. All val-

ues are kept when using the ADSD approach:

• Individuals and interactions over processes and tools

Agile development emphasizes professionals who

comprise a project team, rather than specific tools.

The ADSD complies with this principle, as profes-

sionals are needed to model the domain. ADSD is

based on the modeling by people and does not

impose specific tools or processes. ADSD assures

that the system complies with the environment

understanding.

• Working software over comprehensive documentation

As previously mentioned, agile methods do not empha-

size documentation. One of the core motivators for the

ADSD architecture is to enable documentation that is in

fact part of the executable system. Therefore, ADSD

proposes a way of consolidating this principle with the

need for documentation.

• Customer collaboration over contract negotiation

Agile teams follow practices that keep them focused on

the needs of their customers. Agile development

advocates only contractual relationships that encourage

the project team to work with its customer. In order to

support such values, proper communication with cus-

tomers should be established. ADSD supports such

communication by enabling developers to understand

the customer domain.
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• Responding to change over following a plan

Agile development stresses practices that enable

adjustment to changing requirements and system envi-

ronments. An important element of ADSD is its

supporting architecture, under which domain knowl-

edge is isolated from implementation knowledge. In

ADSD, changes in knowledge about the IS environ-

ment propagate into the conceptual subsystem. This

propagation has two effects: It facilitates communica-

tion about the changing environment, and it immedi-

ately affects the system operation.

7 Summary

This study concerns documentation in agile development

processes. Agile software development methods attempt to

offer an answer to the eager business community, asking

for lightweight and nimbler software development pro-

cesses [3]. Agerfalk and Fitzgerald [4] claim that these

development methods differ significantly from the tradi-

tional plan-based approaches by emphasizing development

productivity rather than the rigor process.

In a parallel venue, there is a general agreement that the

major disadvantage of agile processes is in the loss of

undocumented knowledge [3]. Moreover, this knowledge is

important to support communication, which is crucial in

agile development [2, 17, 39]. Furthermore, due to the

general trend toward globalization, documentation

becomes increasingly important since in physically sepa-

rated development teams, communication becomes even

more difficult, especially in agile development processes

[30, 31]. In this context, Parnas [52] suggests that agile

methods that try to avoid documentation should not be

recommended.

Since agile processes take the general stand that true

design can only be found in working source code, we have

analyzed the relations between implementation and design

documents. We have found that traditionally documented

knowledge, which is not readily available in system source

code, is the knowledge accumulated during the process of

requirements engineering. Both agile RE and traditional

RE processes come to help elicit user requirements.

However, while traditional RE stresses rigid processes and

documented domain knowledge, the agile processes forfeit

domain documentation, assuming such documentation

cannot effectively evolve.

By analyzing traditional RE processes, we are able to

extract the constructs facilitating documentation of domain

knowledge. We suggest that agile documentation of

domain knowledge is enabled by establishing means for

using these documentation constructs as part of the system

code. We also suggest an architectural design in which

domain knowledge is represented explicitly and is isolated

from other segments of code. Under this design, the doc-

umented domain knowledge drives the processing of the

system at runtime.

This study identifies documentation constructs that are

missed in agile processes and provides methods for

incorporating their agile use. The work presented in this

manuscript paves the way for a holistic approach that can

be proved by a series of experiments and practical expe-

rience. As this research suggests that agile methods can

incorporate agile documentation, many directions for

future research can originate from it. For example,

extending our framework to support explicit documenta-

tion of other types of knowledge in agile processes is one

direction for future work. Alternatively, examining other

possible mechanisms and architectures to support the use

of documentation constructs within working system code is

another possible venue for future research.
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